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The entropy of a confined polymer: I1 

R. COLLINS and A. WRAGG 
Department of Mathematics] University of Salford 
MS. received 7th November 1968 

Abstract. The pressure exerted by an idealized ‘random-flight’ polymer on the walls 
of a container is calculated for the complete range of polymer lengths. The calculation 
uses a numerical approach based on the method initiated by Edwards and Freed. 

1. Introduction 
Edwards and Freed (1969, to be referred to as I) have directed attention to the theo- 

retical importance of the simple problem of the pressure P exerted on the walls of a con- 
tainer of volume V by a single polymer molecule of total length L. The problem is 
idealized in the sense that the polymer is assumed to consist of monomers each of length I 
and completely freely hinged. Excluded-volume effects are neglected and L is assumed 
to be very large in comparison with I ,  but not necessarily large compared with V1I3. For 
L/V1’3 < 1, P is given approximately by the perfect gas expression T/V,  as shown in I, 
where an expression for P in the asymptotic region 1 < L/V1I3 is also derived. The  
purpose of the present paper is to investigate the variation of P for intermediate values of 
L/V1I3, and in particular the speed with which the asymptotic regions are approached. 
The  quickest and most convenient method of doing this is by the direct numerical evalua- 
tion of the Green function for the appropriate random-walk problem. For this particular 
purpose we adopt a slightly modified version of the formulation given in I. 

2. Formulation of the problem 
As pointed out in I, the problem essentially reduces to that of determining, for a 

Brownian particle starting at r’ inside a box of volume V ,  the probability that, at a later 
time, the particle will be at r and never have reached the container walls in the interim 
period. ‘Time’ here refers to arc length s along a possible configuration of the polymer 
chain. In  the approximation we use here, we are only concerned with polymer molecules 
which are very much longer than their consituent monomers, i.e. I < L. Except for a very 
small fraction of the molecule we may suppose that 1 < s and the Gaussian approximation 
holds, the polymer configuration following the trajectory of a typical purely diffusive 
Brownian walk. For a free Brownian motion, it is well known that the motion can be 
regarded as a superposition of three similar but uncorrelated one-dimensional diffusion 
processes (e.g. Chandrasekhar 1943). The same is clearly true for a Brownian motion 
inside an absorbing box, provided that the box is rectangular, and the coordinate axes are 
chosen parallel to the box edges, since then the absorption from, say, the yx faces will not 
affect the x trajectory (cf. Chandrasekhar 1943, p. 57). The same is not true in general for 
any other shaped box. The  general problem of diffusion in the presence of absorbing 
barriers has been discussed by a number, of authors (e.g. Chandrasekhar 1943, p. 60 et seq.). 

In  treating the three-dimensional box problem in this approximation, we accordingly 
consider three uncorrelated Brownian trajectories parallel to the x, y and z axes each with 
‘time’ s, where 0 < s < L. (To deal with the case where L N 1 we would have to use the 
Fokker-Planck equation instead of the diffusion equation.) In  this approximation the three 
component entropy contributions are clearly additive and (for a cubical box of side L)  the 
same. 

Let us consider a one-dimensional interval of length b ,  
b = VI13 

and a polymer length 
L = Ql (1 e’). 
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Let us consider the random-walk problem where a trajectory consists of steps of length I 
either in the positive or negative x direction. Let M,(L) be the total possible unrestricted 
paths of length L starting from a spec@ fixed point (x’, say) when 

S,(L) = lnM,(L) (3) 
is the corresponding entropy. (The temperature here is measured in energy units, so that 
Boltzmann’s constant is unity and S is dimensionless.) We take the origin at the centre of 
the interval b and suppose one end of the polymer is at x‘ ( - +b < x’ < i b ) .  Let Mb(L, x) 
be the number of the unconstrained (one-dimensional) paths of length L which start at x’ 
and never go outside the interval ( -  i b ,  i b ) .  Then the corresponding entropy Sb(L, x) is 
given by 

where Wb(L, x) is the probability that a path of length L, starting at x, stays inside ( - +b, ib) .  
If Gb(xIx’, L) dx is the probability that such a path finishes between x and x+ dx, then 

&(L, x’) = S,(L) + In j”” dx Gb(XIX‘, L). (5) 
- bi2 

To obtain the ensemble value sb(L) we have to average over starting position x’. As 
pointed out in I, we are essentially engaged in a counting problem in which we select at 
random one end of a possible unrestricted trajectory and either count it or not according to 
whether it subsequently crosses the container mall. Apart from the fact that we must have 
- +b < x’ < +b there is no reason to weight one value of x’ more than another, so a uniform 
distribution over x’ is correct. The selection of the initial point gives an entropy contribu- 
tion In b, so we have 

i.e. 

sb(d!/) = In b+ (sb(d!/, 3’)) 

= In b + S,(L) + - 1”:’ dx’ In f” dx Gb(xIx’, L )  
- bl2 b - b : z  

sb(L) = lnb+S,(L)+-  j: dx’ In j”’ dx Gb(xIx’, L )  
- b 1 2  

since the problem is obviously symmetric between positive and negative values of x’. 
Typical one-dimensional allowable trajectories are shown in figure 1, 

The  problem is now reduced to that of finding Gb(XiX’, s), the Green function for 
Brownian motion between fixed absorbing boundaries at & i b .  This is a special case of a 
more general one discussed by the authors in a previous paper (Collins and Wragg 1968). 
If we denote by G,(xlx’, L)  the corresponding unrestricted Green function (as 6 -+ CO), 
then 

(’7) 
3 11.2 3 

G,(+’,L) = (=) exP(-  &-x’)’ 

satisfying the diffusion equation 
aw I a2w 

with 
w(x,  L)  +6(x-x’) ( L  3 0 ) .  

The function G,(x x’, L)  satisfies (8) and (9) in - +b < x < $b with the additional con- 
straint 

(10) Gb(xIx’,  L )  = 0 (X = _+ b). 
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Figure 1, Allowed and disallowed polymer configurations. 

For conciseness it is convenient to change to dimensionless variables 

81 
3b2 

U = - L  

2 
b 

V =-x .  

We denote by g(u]v’,  U) the Green function corresponding to Gb(x;x‘, L). Then (8), (9) 
and (10) are replaced by 

ag 1 a2g 
a~ 4 a02 

_ -  - -- ( - 1  < 71 < 1) 

(14) g = 0 ( E  = I 1, allu) 

and (assuming g is properly renormalized) 

g(vlv’,u) -+6(V-E’ )  (U -to>. 
The  function G, is replaced by 

As discussed elsewhere (Collins and Wragg 1968), for small U, g(v id ,  U) is most usefully 
expressed as a sum of image functions formed by successive ‘reflections’ in the absorbing 
boundaries with a sign change at each reflection. The first three terms are given by 

g(v Iv ’ ,  U) = gm.(vIv’, u)-gm(vj(2-v’), u)-gm(vl(-2-v’),u)+ ... . (17) 
For large U the convergence of the series (17) becomes poor and the most appropriate 

form for the solution is that given in I, which in these units becomes 
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The  convergence of the series (17) is satisfactory over the range 0 < U < 2.0, and that 
of (18) for 1.0 < U, so that the two forms together enable g to be calculated for all real 
values of U. 

T o  obtain the entropy S for a three-dimensional cubic box of volume V = b3, we may 
simply multiply the above entropy by 3, since we assume three uncorrelated one-dimensional 
random walks. The  resulting (three-dimensional) pressure P is given by 

T 16ZLT l1 dv(a/au)g(vlv’, U) 
V 3V5J3 = - - -Io dv’ f- s-l dz’g(z:lv’, U) 

The partial derivative in (19) was obtained by term-by-term differentiation of the series 
(17) or (18), and the subsequent integrations carried out numerically. The  result is shown 
in figure 2, where PVlT  - 1 is plotted against U = 81L/3 V2!3. 

3. Asymptotic forms 
The  limiting forms given in I for 1 4 L/TJ1l3 and L/V1I3 4 1 respectively correspond 

here to 1 < U and U < 1, and can be derived from (17) and (18). For large U only the first 
term in (18) makes a significant contribution, and relation (6) reduces to 

i.e. 
S,(L) N lnb+S,(L)- 

S(L, V )  = 3S,(L) 
21L - In V+3S,(L)- - + A  
2 v213 

where 

and is a dimensionless constant computed numerically. The  pressure derived from (21) 
becomes 

8s T n21L p = T- w -+- av v 3 ~ 5 ’ 3  
or, since V1‘3/L is now small, 

21L 
3 V5’3 P - -  (V1’3 4 L) (24) 

the form given in I. 
For small U the only appreciable contribution to g in the form of the series (17) comes 

from the first three terms given. Using (16) in (17) and evaluating the integrals over z‘, 
there results eventually 

1 -v’ 1 f v ’  
dvg(vlv’, U) 1: 1 - erfc 
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For U < 1, and 0 < v < 1, all the terms on the right-hand side of (25) are very small 
except the first two. Hence we can write 

1 1-v' 
dv' In 1' dvg(v]v',  U) -N / dv' In erf (-) 

-1 0 du J O  

?'he integrand is 
approximate (26) by 

where 

and 

1IJU 

= - 2 / u I  dhlnerfh.  (26) 
0 

very small for large values of the argument, so for small U we may 

sl dv' In 1' dvg(vlv', U) N C d u  
-1 

c =  -Ia dh In erf h = 1.0344 

S, Inb+Sm(L)-C2/u 

0 

= +ln V +  S,(L) - C ( - ;z3) lI2* 

If we add the contributions from the other two Cartesian axes and differentiate with 
respect to V the resulting pressure is given by 

T 
V 

( L  < V1'3). 

If we write 

then (19) becomes, for a fluid of N non-interacting polymers, 

P V  
NT 
- -1 = 2uf(u) 

while the asymptotic forms (30) and (23) become 

P V  
NT 
PV T Z U  

NT 8 

- -1 1: C d u  

- - I - - -  (1 < U) 

(U < 1) 

where, expressed in terms of V,  (1 1) becomes 

(33) 

(34) 

The exact form (32) was computed numerically and is compared with the asymptotic 
forms (33) and (34) in figure 2 for a single polymer ( N  = 1). 

It can be seen that the forms (33) and (34) give excellent agreement with (32) for 
0 < U < 0.8 and 0.8 < U respectively (to within 10% in the worst case). Hence the tw@ 
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asymptotic forms effectively cover the whole range, with a relatively well-defined break- 
point of U N 0.65, i.e. 

V213 

L E 0.24- (36) 1 

when the polymer first ‘hits’ the box (in an r.m.s. sense). 

Figure 2. Equation of state for an idealized single polymer in a cubical container. 
Full curve, exact form; broken curve, asymptotic form for small container of volume Y; 

chain curve, asymptotic curve for large container of volume V. 
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